Unspliced X-box-binding Protein 1 (XBP1) Protects Endothelial Cells from Oxidative Stress through Interaction with Histone Deacetylase 3*
نویسندگان
چکیده
It is well known that atherosclerosis occurs geographically at branch points where disturbed flow predisposes to the development of plaque via triggering of oxidative stress and inflammatory reactions. In this study, we found that disturbed flow activated anti-oxidative reactions via up-regulating heme oxygenase 1 (HO-1) in an X-box-binding protein 1 (XBP1) and histone deacetylase 3 (HDAC3)-dependent manner. Disturbed flow concomitantly up-regulated the unspliced XBP1 (XBP1u) and HDAC3 in a VEGF receptor and PI3K/Akt-dependent manner. The presence of XBP1 was essential for the up-regulation of HDAC3 protein. Overexpression of XBP1u and/or HDAC3 activated Akt1 phosphorylation, Nrf2 protein stabilization and nuclear translocation, and HO-1 expression. Knockdown of XBP1u decreased the basal level and disturbed flow-induced Akt1 phosphorylation, Nrf2 stabilization, and HO-1 expression. Knockdown of HDAC3 ablated XBP1u-mediated effects. The mammalian target of rapamycin complex 2 (mTORC2) inhibitor, AZD2014, ablated XBP1u or HDAC3 or disturbed flow-mediated Akt1 phosphorylation, Nrf2 nuclear translocation, and HO-1 expression. Neither actinomycin D nor cycloheximide affected disturbed flow-induced up-regulation of Nrf2 protein. Knockdown of Nrf2 abolished XBP1u or HDAC3 or disturbed flow-induced HO-1 up-regulation. Co-immunoprecipitation assays demonstrated that XBP1u physically bound to HDAC3 and Akt1. The region of amino acids 201 to 323 of the HDAC3 protein was responsible for the binding to XBP1u. Double immunofluorescence staining revealed that the interactions between Akt1 and mTORC2, Akt1 and HDAC3, Akt1 and XBP1u, HDAC3, and XBP1u occurred in the cytosol. Thus, we demonstrate that XBP1u and HDAC3 exert a protective effect on disturbed flow-induced oxidative stress via up-regulation of mTORC2-dependent Akt1 phosphorylation and Nrf2-mediated HO-1 expression.
منابع مشابه
Unspliced X-box-binding Protein 1 (XBP1) Protects Endothelial Cells from Oxidative Stress through Interaction with Histone Deacetylase
متن کامل
Preconditioning with endoplasmic reticulum stress mitigates retinal endothelial inflammation via activation of X-box binding protein 1.
Endoplasmic reticulum (ER) stress is widely implicated in various pathological conditions such as diabetes. Previously, we reported that enhanced ER stress contributes to inflammation and vascular damage in diabetic and ischemia-induced retinopathy. However, the exact role of the signaling pathways activated by ER stress in vascular inflammation remains poorly understood. In the present study, ...
متن کاملOxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment.
Apoptosis of VSMCs (vascular smooth-muscle cells) leads to features of atherosclerotic plaque instability. We have demonstrated previously that plaque-derived VSMCs have reduced IGF1 (insulin-like growth factor 1) signalling, resulting from a decrease in the expression of IGF1R (IGF1 receptor) compared with normal aortic VSMCs [Patel, Zhang, Siddle, Soos, Goddard, Weissberg and Bennett (2001) C...
متن کاملRepression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction.
RATIONALE Inactivation of the p66Shc adaptor protein confers resistance to oxidative stress and protects mice from aging-associated vascular diseases. However, there is limited information about the negative regulating mechanisms of p66Shc expression in the vascular system. OBJECTIVE In this study, we investigated the role of SIRT1, a class III histone deacetylase, in the regulation of p66Shc...
متن کاملGreen tea extract protects endothelial progenitor cells from oxidative insult through reduction of intracellular reactive oxygen species activity
Objective(s):Many studies have reported that tea consumption decreases cardiovascular risk, but the mechanisms remain unclear. Green tea is known to have potent antioxidant and free radical scavengingactivities. This study aimed to investigate whether green tea extract (GTE) can protect endothelial progenitors cells (EPCs) against oxidative stress through antioxidant mechanisms. Materials and M...
متن کامل